3.285 \(\int \frac{1}{(1-a^2 x^2)^2 \tanh ^{-1}(a x)} \, dx\)

Optimal. Leaf size=27 \[ \frac{\text{Chi}\left (2 \tanh ^{-1}(a x)\right )}{2 a}+\frac{\log \left (\tanh ^{-1}(a x)\right )}{2 a} \]

[Out]

CoshIntegral[2*ArcTanh[a*x]]/(2*a) + Log[ArcTanh[a*x]]/(2*a)

________________________________________________________________________________________

Rubi [A]  time = 0.0662723, antiderivative size = 27, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {5968, 3312, 3301} \[ \frac{\text{Chi}\left (2 \tanh ^{-1}(a x)\right )}{2 a}+\frac{\log \left (\tanh ^{-1}(a x)\right )}{2 a} \]

Antiderivative was successfully verified.

[In]

Int[1/((1 - a^2*x^2)^2*ArcTanh[a*x]),x]

[Out]

CoshIntegral[2*ArcTanh[a*x]]/(2*a) + Log[ArcTanh[a*x]]/(2*a)

Rule 5968

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c, Subst[Int[(
a + b*x)^p/Cosh[x]^(2*(q + 1)), x], x, ArcTanh[c*x]], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0]
&& ILtQ[2*(q + 1), 0] && (IntegerQ[q] || GtQ[d, 0])

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{1}{\left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\cosh ^2(x)}{x} \, dx,x,\tanh ^{-1}(a x)\right )}{a}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{1}{2 x}+\frac{\cosh (2 x)}{2 x}\right ) \, dx,x,\tanh ^{-1}(a x)\right )}{a}\\ &=\frac{\log \left (\tanh ^{-1}(a x)\right )}{2 a}+\frac{\operatorname{Subst}\left (\int \frac{\cosh (2 x)}{x} \, dx,x,\tanh ^{-1}(a x)\right )}{2 a}\\ &=\frac{\text{Chi}\left (2 \tanh ^{-1}(a x)\right )}{2 a}+\frac{\log \left (\tanh ^{-1}(a x)\right )}{2 a}\\ \end{align*}

Mathematica [A]  time = 0.0895055, size = 20, normalized size = 0.74 \[ \frac{\text{Chi}\left (2 \tanh ^{-1}(a x)\right )+\log \left (\tanh ^{-1}(a x)\right )}{2 a} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((1 - a^2*x^2)^2*ArcTanh[a*x]),x]

[Out]

(CoshIntegral[2*ArcTanh[a*x]] + Log[ArcTanh[a*x]])/(2*a)

________________________________________________________________________________________

Maple [A]  time = 0.057, size = 24, normalized size = 0.9 \begin{align*}{\frac{{\it Chi} \left ( 2\,{\it Artanh} \left ( ax \right ) \right ) }{2\,a}}+{\frac{\ln \left ({\it Artanh} \left ( ax \right ) \right ) }{2\,a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-a^2*x^2+1)^2/arctanh(a*x),x)

[Out]

1/2*Chi(2*arctanh(a*x))/a+1/2*ln(arctanh(a*x))/a

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a^{2} x^{2} - 1\right )}^{2} \operatorname{artanh}\left (a x\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-a^2*x^2+1)^2/arctanh(a*x),x, algorithm="maxima")

[Out]

integrate(1/((a^2*x^2 - 1)^2*arctanh(a*x)), x)

________________________________________________________________________________________

Fricas [B]  time = 2.02823, size = 157, normalized size = 5.81 \begin{align*} \frac{2 \, \log \left (\log \left (-\frac{a x + 1}{a x - 1}\right )\right ) + \logintegral \left (-\frac{a x + 1}{a x - 1}\right ) + \logintegral \left (-\frac{a x - 1}{a x + 1}\right )}{4 \, a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-a^2*x^2+1)^2/arctanh(a*x),x, algorithm="fricas")

[Out]

1/4*(2*log(log(-(a*x + 1)/(a*x - 1))) + log_integral(-(a*x + 1)/(a*x - 1)) + log_integral(-(a*x - 1)/(a*x + 1)
))/a

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a x - 1\right )^{2} \left (a x + 1\right )^{2} \operatorname{atanh}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-a**2*x**2+1)**2/atanh(a*x),x)

[Out]

Integral(1/((a*x - 1)**2*(a*x + 1)**2*atanh(a*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a^{2} x^{2} - 1\right )}^{2} \operatorname{artanh}\left (a x\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-a^2*x^2+1)^2/arctanh(a*x),x, algorithm="giac")

[Out]

integrate(1/((a^2*x^2 - 1)^2*arctanh(a*x)), x)